Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Planets ; 127(2): e2021JE006848, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35859923

RESUMO

Aeolis Mons (informally, Mount Sharp) exhibits a number of canyons, including Gediz and Sakarya Valles. Poorly sorted debris deposits are evident on both canyon floors and connect with debris extending down the walls for canyon segments that cut through sulphate-bearing strata. On the floor of Gediz Vallis, debris overfills a central channel and merges with a massive debris ridge located at the canyon terminus. One wall-based debris ridge is evident. In comparison, the floor of Sakarya Vallis exhibits a complex array of debris deposits. Debris deposits on wall segments within Sakarya Vallis are mainly contained within chutes that extend downhill from scarps. Lateral debris ridges are also evident on chute margins. We interpret the debris deposits in the two canyons to be a consequence of one or more late-stage hydrogeomorphic events that increased the probability of landslides, assembled and channelized debris on the canyon floors, and moved materials down-canyon. The highly soluble nature of the sulphate-bearing rocks likely contributed to enhanced debris generation by concurrent aqueous weathering to produce blocky regolith for transport downslope by fluvial activity and landslides, including some landslides that became debris flows. Subsequent wind erosion in Gediz Vallis removed most of the debris deposits within that canyon and partially eroded the deposits within Sakarya Vallis. The enhanced wind erosion within Gediz Vallis was a consequence of the canyon's alignment with prevailing slope winds.

2.
Science ; 373(6551): 198-204, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244410

RESUMO

Mars' sedimentary rock record preserves information on geological (and potential astrobiological) processes that occurred on the planet billions of years ago. The Curiosity rover is exploring the lower reaches of Mount Sharp, in Gale crater on Mars. A traverse from Vera Rubin ridge to Glen Torridon has allowed Curiosity to examine a lateral transect of rock strata laid down in a martian lake ~3.5 billion years ago. We report spatial differences in the mineralogy of time-equivalent sedimentary rocks <400 meters apart. These differences indicate localized infiltration of silica-poor brines, generated during deposition of overlying magnesium sulfate-bearing strata. We propose that destabilization of silicate minerals driven by silica-poor brines (rarely observed on Earth) was widespread on ancient Mars, because sulfate deposits are globally distributed.

3.
J Geophys Res Planets ; 125(12): e2020JE006527, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33520561

RESUMO

This paper provides an overview of the Curiosity rover's exploration at Vera Rubin ridge (VRR) and summarizes the science results. VRR is a distinct geomorphic feature on lower Aeolis Mons (informally known as Mount Sharp) that was identified in orbital data based on its distinct texture, topographic expression, and association with a hematite spectral signature. Curiosity conducted extensive remote sensing observations, acquired data on dozens of contact science targets, and drilled three outcrop samples from the ridge, as well as one outcrop sample immediately below the ridge. Our observations indicate that strata composing VRR were deposited in a predominantly lacustrine setting and are part of the Murray formation. The rocks within the ridge are chemically in family with underlying Murray formation strata. Red hematite is dispersed throughout much of the VRR bedrock, and this is the source of the orbital spectral detection. Gray hematite is also present in isolated, gray-colored patches concentrated toward the upper elevations of VRR, and these gray patches also contain small, dark Fe-rich nodules. We propose that VRR formed when diagenetic event(s) preferentially hardened rocks, which were subsequently eroded into a ridge by wind. Diagenesis also led to enhanced crystallization and/or cementation that deepened the ferric-related spectral absorptions on the ridge, which helped make them readily distinguishable from orbit. Results add to existing evidence of protracted aqueous environments at Gale crater and give new insight into how diagenesis shaped Mars' rock record.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...